
词嵌入 (Word Embeddings)

VCG

阶段：神经网络语言模型

2

➢嵌入向量（Embeddings）

➢词嵌入（Word2vec）

➢Skip-Gram

➢CBOW

➢子词嵌入（fastText）

➢全局向量的词嵌入（GloVe）

概要

3

➢根本问题

➢如何解决N-gram模型的“无语义泛化能力”缺陷？

➢如何让机器理解词义，即将离散的词语符号转化为能编码语义的数学对象？

➢嵌入（Embedding）

➢编码，嵌入（Embedding）的本质目标

➢编码的向量表示必须能够编码词语的语义信息

➢语义相似的词，其向量在空间中也应该彼此接近

➢国王 vs. 王后 -> 距离近

➢国王 vs. 香蕉 -> 距离远

根本问题：如何让机器理解词义？

词嵌入（Word2vec）

5

➢独热编码 (One-Hot Encoding)

➢将每个词映射为一个高维稀疏向量

➢向量长度 = 词汇表大小 (N)

➢只有对应词的索引位置为1，其余全为0。

➢国王 -> [1, 0, 0, ..., 0]

➢王后 -> [0, 1, 0, ..., 0]

➢香蕉 -> [0, 0, 1, ..., 0]

➢但是，这种表示方法存在致命缺陷…

早期的词嵌入 - 独热编码 (One-Hot Encoding)

6

➢语义鸿沟 (Semantic Gap)

➢任意两个不同词的独热向量都是正交的

➢dot(国王, 王后) = 0

➢dot(国王, 香蕉) = 0

➢模型无法从向量本身判断“国王”和“王后”比“国王”和“香蕉”更相似。它只编码了身

份，未编码语义

➢维度灾难与稀疏性 (Curse of Dimensionality & Sparsity)

➢当词汇表很大时（如几十万），向量维度极高

➢这给计算和存储带来巨大挑战，也使得模型难以泛化

➢核心目标：需要一种密集(Dense)、低维(Low-dimensional)的向量表示，它必须能编

码词语间的语义关系

独热编码的困境

理论基石：分布式假设

8

➢分布式假设（Distributional Hypothesis），语言学基石

➢"A word is characterized by the company it keeps." (J.R. Firth, 1957)

➢核心思想：一个词的意义，由其频繁出现的上下文所决定

➢恒星 常与 行星、星系、发光 共同出现；香蕉 常与 水果、黄色、食物 共同出现

➢语义相近的词，它们的词向量在向量空间中的距离也相近

➢目标： 设计一个代理任务 (Proxy Task)，让模型在完成任务的过程中，被迫将上下文信息“压缩”

进一个低维稠密向量（分布式表示）

➢为了让离散的符号（如单词）能在一个低维、稠密的向量空间中被表示，并使得向量间的

几何关系（距离、方向）能直接反映符号间的语义关系（相似性、类比）

➢分布式表示，“嵌入”

➢稠密性 :词嵌入通常是低维的，而且是稠密的

➢低维性 : 向量的维度 𝑑通常是一个远小于概念总数 𝑁的固定值

➢分布性：一个词的意义 “分布”在所有维度上。每个维度都可能代表一个抽象的、无法直接解释的语义特征

➢相似性 : 语义上相似的概念，其向量在空间中的距离也相近。

词嵌入理论基石：分布式假设

9

➢如何设计一个任务，让模型在完成任务的过程中，将词语的上下文信息“压缩”进一

个低维稠密向量里？

➢解决方案：代理任务 (Proxy Task)

➢不直接去“学习向量”，而是让模型去完成一个看似简单的预测任务。词向量是完成这个任

务时产生的副产品

词嵌入核心策略：通过“代理任务”学习

流派一：基于预测的模型 (Word2vec)

11

➢由Google于2013年提出，开创了预测式词嵌入的范式。它将“分布式假设”转化为

一个具体的预测任务

➢代理任务：大规模的“完形填空”游戏

➢“天空是蓝色的，草地是 ___ 的。”

➢为了填对“绿色”，模型必须理解“草地”和“绿色”之间的语义关联

➢Word2vec通过让机器进行亿万次这样的“猜词游戏”来学习词向量

➢两种经典架构：

➢Skip-Gram (跳元模型) (更常用，效果更好)

➢任务：根据中心词，预测其上下文词。

➢直觉： "绿色" -> [..., "草地", "是", "的", ...]

➢Continuous Bag-of-Words (CBOW, 连续词袋模型)

➢任务：根据上下文词，预测中心词。

➢直觉： [..., "草地", "是", "的", ...] -> "绿色"

Word2vec

Skip-Gram

13

➢目标函数 (理想形式): 给定中心词 𝑤𝑐，最大化真实上下文词 𝑤𝑜 出现的概率

𝑃(𝑤𝑜|𝑤𝑐) =
exp(𝑣𝑐

𝑇𝑢𝑜)

σ𝑤∈𝑉 exp (𝑣𝑐
𝑇𝑢𝑤)

➢𝑣𝑐: 中心词向量 (来自输入矩阵W)

➢𝑢𝑤: 上下文词向量 (来自输出矩阵W’)

➢为词汇表每个词 𝑤 学习两个向量表达𝑣𝑤 (中心词)𝑢𝑤 (上下文词)，调整𝑣 和 𝑢，使得

整个语料库的似然函数最大化

➢问题： 公式中的分母 σ𝑤∈𝑉 exp (𝑣𝑐
𝑇𝑢𝑤) 需要对词汇表中的每一个词进行计算。

➢代价： 如词汇表大小 |𝑉| = 100,000，那么每一步更新都需要计算10万次点积和指数。

➢结论： 须找到近似计算Softmax的方法。这就是负采样和层次化Softmax诞生的原因。

Word2vec 深入解析 (1): Skip-Gram 工作机制

14

➢转换： 将一个复杂的多分类问题，转化为一系列简单的二分类问题

➢新任务： 对于一个真实的(中心词, 上下文词)对，模型需要判断它是“真”的；对于

随机抽取的(中心词, 噪声词)对，模型需要判断它是“假”的【有限个负采样】

➢损失函数 (重构后的核心):

𝐿 = −log𝜎(𝑣𝑐
𝑇𝑢𝑜) −෍

𝑖=1

𝑘

𝔼𝑤𝑖∼𝑃𝑛(𝑤) [log𝜎(−𝑣𝑐
𝑇𝑢𝑖)]

➢最大化真实词对的概率，同时最小化噪声词对的概率

➢每一步只需要计算 𝑘 + 1 次点积（𝑘 通常为5-20），而不是 |𝑉| 次

优化一：负采样 (Negative Sampling)

15

➢整个过程可以分解为五个主要阶段：从原始文本到最终可用的词向量

➢以一个具体的例子贯穿始终，输入句子是 "The quick brown fox jumps over the lazy dog“

➢设定的窗口大小为5（即中心词左右各2个词）

Skip-Gram 宏观工作流程

Skip-Gram 模型：宏观工作流程

阶段一：语料准备

"The quick brown fox..."

 分词、清洗

 构建词汇表

阶段二：生成训练样本

... quick brown fox ...

滑动窗口

...

训练样本

阶段三 & 四：模型初始化与迭代训练

输入嵌入矩阵

W
(V×D)

输出嵌入矩阵

W'
(V×D)

对于每个样本 (例如: fox, jumps):查
找

查
找

单步训练核心

梯
度

更
新

更
新

遍历所有样本

阶段五：最终输出

词嵌入向量

W

(丢弃W')

fox
v

jumps
u

训练结束后

(brown, quick)

(brown, fox)

1. 计算点积

2. 应用 Sigmoid

3. 计算损失与梯度

16

➢将非结构化的原始文本转换为机器可以处理的结构化数据

➢动作

➢分词 (Tokenization)： 将文本分割成一个个独立的词语（tokens）。例如，"The quick brown

fox..." -> ['The', 'quick', 'brown', 'fox', ...]

➢文本清洗 (Text Cleaning)： 将所有词语转为小写，去除标点符号等。['The', 'quick', ...] ->

['the', 'quick', ...]

➢构建词汇表 (Build Vocabulary)： 统计所有不重复的词语，并根据词频进行筛选（如，丢弃出

现次数低于某个阈值的低频词）。为词汇表中的每个唯一词语分配一个唯一的整数ID

➢输出

➢一个词汇表（Vocabulary），即一个从词语到整数ID的映射。

➢如：{'the': 0, 'quick': 1, 'brown': 2, 'fox': 3, ...}

➢一个将整个语料库表示为ID序列的列表。例如：[0, 1, 2, 3, 4, 5, 0, 6, 7]

阶段一：语料准备与词汇表构建

17

➢根据分布假说，从语料库中创建大量的 (中心词, 上下文词) 训练对

➢动作

➢滑动窗口 (Sliding Window)： 在ID序列上移动一个固定大小的窗口

➢提取词对： 在每个窗口位置，将窗口中心的词作为“中心词”，将窗口内所有其他词作为

“上下文词”，并生成相应的词对

➢输出： 一个巨大的训练样本集

➢示例： 对于序列 ... quick brown fox jumps over ... (ID: ... 1, 2, 3, 4, 5 ...)

➢当窗口中心是 brown (ID: 2) 时，上下文是 the, quick, fox, jumps。生成的样本对为：(brown, the),

(brown, quick), (brown, fox), (brown, jumps)

➢当窗口中心是 fox (ID: 3) 时，上下文是 quick, brown, jumps, over。生成的样本对为：(fox, quick), (fox,

brown), (fox, jumps), (fox, over)

➢此过程遍历整个语料库，产生数百万甚至数十亿的训练样本

阶段二：生成训练样本

18

Word2Vec

Word2Vec 的本质结构 (展开输出层)

输入

中心词wc独热编码

[0, 0, ..., 1, ..., 0, 0]

第c个位置是1

维度: V × 1

投影层 (核心)

嵌入矩阵 / 查找表

W

维度: V × D

第c行查找操作 (Indexing)

vc

输出层内部机制 (以负采样为例)

输出嵌入矩阵

W'

查找正/负样本向量

正样本向量uo 负样本向量uneg

计算得分与损失

1. 点积:vc uo,vc uneg

2. Sigmoid & 损失函数

损失值 (Loss)

误差反向传播以更新 W 和 W'

19

➢准备好神经网络的参数，即我们最终要学习的词向量

➢动作

➢创建两个权重矩阵

➢输入嵌入矩阵𝑊 (维度 𝑉 × 𝐷)：每一行代表一个词作为“中心词”时的初始向量

➢输出嵌入矩阵𝑊′ (维度 𝑉 × 𝐷)：每一行代表一个词作为“上下文词”时的初始向量

➢使用小的随机数对这两个矩阵进行初始化

➢输出

➢两个随机初始化的嵌入矩阵。这些矩阵在训练开始时没有任何语义信息

阶段三：模型初始化

20

➢遍历所有训练样本对，调整两嵌入矩阵向量，使得频繁共现词对在向量空间中更接近

➢单步动作（处理一个正样本对，如 (fox, jumps)）

➢获取正样本向量： 从矩阵 𝑊 中查找中心词 fox 的输入向量 𝑣𝑓𝑜𝑥；从矩阵 𝑊′ 中查找上下文词

jumps 的输出向量 𝑢𝑗𝑢𝑚𝑝𝑠

➢生成负样本和向量： 从词汇表中随机抽取 𝑘 个词作为负样本（如，apple, car），从矩阵𝑊′

中查找负样本词的输出向量 𝑢𝑎𝑝𝑝𝑙𝑒 和 𝑢𝑐𝑎𝑟

➢正负样本得分：𝑠𝑐𝑜𝑟𝑒𝑝𝑜𝑠 = 𝑣𝑓𝑜𝑥 ⋅ 𝑢𝑗𝑢𝑚𝑝𝑠；𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑔1 = 𝑣𝑓𝑜𝑥 ⋅ 𝑢𝑎𝑝𝑝𝑙𝑒, 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑔2 = 𝑣𝑓𝑜𝑥 ⋅ 𝑢𝑐𝑎𝑟

➢计算损失 𝐿 = − log 𝜎 𝑣𝑐
𝑇𝑢𝑜 + σ𝑖=1

𝑘 𝔼𝑤𝑖∼𝑃𝑛(𝑤) log 𝜎 −𝑣𝑐
𝑇𝑢𝑖

➢让 𝜎(𝑠𝑐𝑜𝑟𝑒𝑝𝑜𝑠)趋近于1，让 𝜎(𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑔) 趋近于0

➢反向传播与更新： 计算损失函数关于所涉及向量（𝑣𝑓𝑜𝑥 , 𝑢𝑗𝑢𝑚𝑝𝑠 , 𝑢𝑎𝑝𝑝𝑙𝑒 , 𝑢𝑐𝑎𝑟）的梯度，并使用

梯度下降法对这些向量进行微小的更新。每一步只更新这 𝑘 + 2个词对应的向量

阶段四：基于负采样的迭代训练

21

➢正样本的优化目标

➢最大化 𝜎 𝑣𝑐
𝑇𝑢𝑜 。在对数空间里，最大化log 𝜎 𝑣𝑐

𝑇𝑢𝑜
➢负样本的优化目标

➢最大化＂不是上下文＂的概率 。在对数空间里，最大化 log 1 − 𝜎 𝑣𝑐
𝑇𝑢𝑛𝑒𝑔 = log𝜎 −𝑣𝑐

𝑇𝑢𝑛𝑒𝑔

➢组合成完整的目标函数

➢对于一个正样本和 𝑘 个负样本，最大化所有这些事件的联合对数似然

Objective = log𝜎 𝑣𝑐
𝑇𝑢𝑜 +෍

𝑖=1

𝑘

log 𝜎 −𝑣𝑐
𝑇𝑢neg ,𝑖

➢转化为损失函数

➢损失函数（Loss Function）

𝐿 = − log𝜎 𝑣𝑐
𝑇𝑢𝑜 +෍

𝑖=1

𝑘

𝔼𝑤𝑖∼𝑃𝑛(𝑤) log 𝜎 −𝑣𝑐
𝑇𝑢𝑖

➢其中，𝑣𝑐 是中心词的向量，𝑢𝑜 是真实上下文词（正样本）的向量，𝑢𝑖 是一个负样本词的向量，𝔼𝑤𝑖∼𝑃𝑛(𝑤)[…] 表示对从噪

声分布 𝑃𝑛(𝑤) 中采样的 𝑘 个负样本求期望（实现时，求和取平均）

优化目标 - 损失函数的定义

22

➢获取训练完成的、蕴含语义信息的最终词向量

➢动作：

➢训练结束后，丢弃输出嵌入矩阵𝑊′

➢保留输入嵌入矩阵𝑊 作为最终的词向量查找表

➢产出

➢一个维度为 𝑉 × 𝐷 的矩阵，其中第 𝑖 行就是词汇表中第 𝑖 个词的最终词嵌入。这个向量可以

用于各种下游NLP任务，如计算词语相似度、文本分类、情感分析等

阶段五：提取并使用词向量

流派二：基于计数的模型 (GloVe)

24

➢局部上下文预测法 (Local Context Prediction)

➢Word2Vec (Skip-Gram, CBOW)

➢基于滑动窗口，通过局部上下文进行预测

➢在词语类比任务上表现优异，能学习到向量的线性结构

➢对全局统计信息的利用是间接和低效的

➢矩阵分解法 (Matrix Factorization)

➢LSA (Latent Semantic Analysis)

➢构建词-文档/词-词共现矩阵，通过SVD等方法降维

➢能利用全局统计信息

➢在词语类比任务上表现不佳，难以捕捉精细的线性语义

➢能否设计一个模型，既能直接利用全局统计信息，又能学习到有意义的线性子结构？

学习词向量的两大流派

25

➢Word2vec对全局共现信息的利用是间接和低效的。能否直接从全局共现矩阵 𝑋 中学

习向量？

➢意义蕴含在共现概率的比率中

➢概率的比率 𝑃𝑖𝑘/𝑃𝑗𝑘 能够区分相关词 (solid) 和不相关词 (gas)。这个比率就像一个“语义指纹”

➢GloVe的目标： 学习词向量，使其向量运算能够直接模拟这个概率比率

核心洞察：意义蕴含在共现概率的“比率”中

 结

 与

与 steam

 与 ice

与

 与

 与

26

➢第一步：将“比率”与向量联系起来
➢我们的目标是找到一个函数 𝐹，它能将词向量映射到共现概率的比率上：

𝐹(𝑤𝑖 , 𝑤𝑗 , ෥𝑤𝑘) =
𝑃𝑖𝑘
𝑃𝑗𝑘

➢𝑤𝑖 , 𝑤𝑗: 中心词 𝑖, 𝑗 的向量；෥𝑤𝑘: 上下文词 𝑘 的向量；𝑃𝑖𝑘 = 𝑋𝑖𝑘/𝑋𝑖: 词 𝑘 出现在词 𝑖 上下文中的概率

➢为了捕捉线性结构，施加约束：

➢输入为向量差：我们关心的是词 𝑖 和 𝑗 的关系，所以输入应为 𝑤𝑖 − 𝑤𝑗。

𝐹(𝑤𝑖 −𝑤𝑗 , ෥𝑤𝑘)

➢使用点积：将向量空间映射到标量空间最直接的方式是点积

𝐹((𝑤𝑖 −𝑤𝑗)
𝑇 ෥𝑤𝑘)

➢利用同态性质：左边是向量的差，右边是概率的商。为了匹配运算，我们希望 𝐹 是一个同态映射。

具体来说，我们希望 𝐹 能将向量空间的加法（或减法）映射到实数空间的乘法（或除法）

➢指数函数 𝐹 = exp 是一个完美的选择

exp((𝑤𝑖 −𝑤𝑗)
𝑇 ෥𝑤𝑘) =

exp(𝑤𝑖
𝑇 ෥𝑤𝑘)

exp(𝑤𝑗
𝑇 ෥𝑤𝑘)

=
𝑃𝑖𝑘
𝑃𝑗𝑘

从洞察到模型 (1):建立数学框架

27

➢第二步：简化得到最终模型

➢从 exp(𝑤𝑖
𝑇 ෥𝑤𝑘) = 𝑃𝑖𝑘 = 𝑋𝑖𝑘/𝑋𝑖 出发，两边取对数

𝑤𝑖
𝑇 ෥𝑤𝑘 = log(𝑃𝑖𝑘) = log(𝑋𝑖𝑘) − log(𝑋𝑖)

➢这个形式还不够好，因为 log(𝑋𝑖)这一项只与 𝑖 有关，与 𝑘 无关，它破坏了模型的对称性

➢关键步骤：引入偏置项 (Bias)

➢注意到 log(𝑋𝑖)可以被吸收到一个只与 𝑖 相关的偏置项 𝑏𝑖 中。同时，为了保持 𝑤 ෥𝑤 的对称性，我们再

为 ෥𝑤𝑘 增加一个偏置项 ෨𝑏𝑘

➢最终，我们得到了GloVe的核心模型方程

𝑤𝑖
𝑇 ෥𝑤𝑘 + 𝑏𝑖 + ෨𝑏𝑘 = log(𝑋𝑖𝑘)

➢解读：

➢这是一个极其简洁的对数-双线性模型

➢它不再预测概率，而是直接拟合共现次数的对数

➢它将全局统计量 log(𝑋𝑖𝑘)与由模型参数构成的线性结构直接联系起来

从洞察到模型 (2):推导最终形式

28

➢目标函数：加权最小二乘

➢我们的目标是让模型预测值 𝑤𝑖
𝑇 ෥𝑤𝑗 + 𝑏𝑖 + ෨𝑏𝑗 尽可能接近真实值 log(𝑋𝑖𝑗)。最自然的方法是使用

最小二乘法。

➢但简单的最小二乘会给所有词对同等的权重，这有两个问题：

➢停用词问题：像 (the, is) 这样的共现次数极高，会在损失中占据主导地位。

➢零共现问题：绝大多数词对的共现次数为0，log(0)无定义。

➢解决方案：加权最小二乘 (Weighted Least Squares)

➢𝐽 = σ𝑖,𝑗=1
𝑉 𝑓 (𝑋𝑖𝑗) 𝑤𝑖

𝑇 ෥𝑤𝑗 + 𝑏𝑖 + ෨𝑏𝑗 − log(𝑋𝑖𝑗)
2

➢𝑓(𝑋𝑖𝑗)是一个权重函数。

➢求和只在 𝑋𝑖𝑗 > 0 的词对上进行，自然地解决了 log(0)的问题。

GloVe的目标函数

29

➢权重函数 𝑓(𝑥) 的设计哲学

➢目标：

➢对于罕见的共现，权重不能为0，它们也包含信息。

➢对于频繁的共现（停用词），权重不能过高，需要设置上限。

➢函数应平滑、非递减。

➢GloVe的权重函数设计：

𝑓(𝑥) = ቊ
(𝑥/𝑥max)

𝛼 if 𝑥 < 𝑥max

1 otherwise

➢𝑥max 是一个阈值（论文中推荐100）

➢𝛼 是一个超参数（论文中推荐0.75）

关键的权重函数 𝑓(𝑥)

30

➢构建共现矩阵 𝑋

➢确定窗口大小

➢遍历整个语料库，统计所有词对 (𝑖, 𝑗) 的共现次数 𝑋𝑖𝑗。可以采用距离加权

➢初始化参数

➢随机初始化中心词向量矩阵 𝑊 (𝑉 × 𝐷) 和上下文词向量矩阵 ෩𝑊 (𝑉 × 𝐷)

➢随机初始化偏置项 𝑏 和 ෨𝑏 (均为 𝑉 × 1 向量)

➢迭代训练

➢对于多轮迭代 (Epochs):

➢打乱共现矩阵中的所有非零项

➢对于每一个 (𝑖, 𝑗) 对，使用随机梯度下降法（如AdaGrad）来最小化损失项 𝑓(𝑋𝑖𝑗)(…)2

➢得到最终词向量

➢训练结束后，最终的词向量是中心词向量和上下文词向量的和：

𝑊𝑓𝑖𝑛𝑎𝑙 = 𝑊 + ෩𝑊

GloVe 完整算法流程

31

➢哪个更好？

➢两者在下游任务上表现都非常出色，各有千秋。

➢GloVe的训练更快，对中等大小的语料库非常有效。

➢Word2Vec的在线学习特性使其对超大规模、流式数据的处理更具灵活性

Word2vec vs. GloVe

特性 GloVe Word2Vec (Skip-Gram)

模型类型 计数模型 (Count-based) 预测模型 (Predictive)

核心思想 显式地拟合全局共现次数的对数 隐式地学习统计规律，通过局部上下文
预测

数据利用 一次性构建全局共现矩阵 在线学习，一次一个上下文窗口
训练速度 训练通常更快，因为收敛所需迭代次数

少
对于巨大语料库，无需构建大矩阵，可
在线训练

理论联系 后续研究表明，Word2Vec也等价于分
解一个隐式的共现矩阵

32

➢结论与要点回顾

➢GloVe成功地将矩阵分解法（全局统计）和预测法（线性结构）的优点结合在了一起

➢其理论基石是“意义蕴含在共现概率的比率中”

➢通过一系列优雅的推导，将复杂的比率问题转化为一个简单的对数-双线性拟合问题

➢有效的加权方案：通过 𝑓(𝑥)函数，巧妙地平衡了高频词和低频词的影响

➢历史地位

➢GloVe与Word2Vec共同定义了静态词嵌入技术的黄金时代

➢它们是后续更复杂的上下文相关模型（如ELMo, BERT）出现之前，NLP领域最重要、最广泛

使用的基础技术之一

➢理解GloVe对于理解表示学习的演进至关重要

结论与历史地位

fastText

34

➢Word2vec/GloVe 的共同缺陷：将词视为原子单位

➢该假设带来严重问题

➢未登录词 (Out-of-Vocabulary, OOV)

➢模型无法为训练语料中未出现过的词生成向量

➢忽略形态学 (Morphology)

➢help, helpful, helpless, unhelpful 被视为四个完全独立的词

➢模型无法利用它们共享的词根 help，导致学习效率低下，对于形态丰富的语言（德语等）尤其严重

➢fastText 的核心目标：通过利用词的内部结构（子词信息）来解决这些问题

➢fastText核心思想： 一个词的向量是其所有字符n-gram向量的和

➢where → <wh, whe, her, ere, re>, <where>

➢架构： 本质上是对Word2vec (Skip-Gram)架构的精巧扩展，而非全新模型

子词模型：fastText

35

➢一个词的向量是其所有子词（character n-grams）向量的和

➢fastText 不再将词视为原子，而是将其表示为字符 n-gram (character n-grams) 的集合

➢示例：词 where (假设 n=3 到 6)

➢添加边界符号: <where>

➢提取 n-grams:

➢3-grams: <wh, whe, her, ere, re>

➢4-grams: <whe, wher, here, ere>

➢5-grams: <wher, where, here>

➢6-grams: <where, where>

➢包含原词: 最后，加入特殊子词 <where> 本身。

➢词 where 的最终表示 = { <wh, whe, her, ..., <where> }

fastText 的核心思想

36

➢在 Skip-Gram 框架内重新定义输入

➢FastText 的整体架构与 Skip-Gram 完全相同（预测上下文），核心创新在于如何构建中心词

的输入向量。

fastText模型架构：对 Skip-Gram 的精巧扩展

Word2Vec（Skip－Gram） FastText

1．输入中心词 c 1．输入中心词 c

2．在词嵌入矩阵W 中查找 2．将 c 分解为子词集合 𝐺𝑐

3．得到向量 𝑣𝑐 = 𝑊[𝑐] 3．在子词嵌入矩阵 z 中查找每个子词 𝑔 ∈ 𝐺𝑐 的向量 𝑧𝑔

4．将所有子词向量求和／平均，得到最终向量 𝑣𝑐 = σ𝑔∈𝐺𝑐
𝑧𝑔

FastText 输入向量构建流程

running

分解

<ru, run, unn, ...

查找向量

z_<ru>,z_run, ,

求和/平均

Σ v_running

37

➢优势 1: 优雅地解决 OOV 问题

➢对于一个未登录词，如 aquaphobia：

➢Word2Vec: 返回 <UNK> 向量，信息为零

➢FastText:

➢将其分解为子词：{ <aq, aqu, qua, ..., bia>, <aquaphobia> }

➢即使从未见过 <aquaphobia> 这个整体，但很可能在训练集中见过 aqua (与水相关) 和 phobia (与恐惧相关) 的子词

➢通过组合这些已知子词的向量，FastText 可以合成一个非常有意义的、近似的向量来表示 aquaphobia

➢优势 2: 高效捕捉形态学信息

➢helpful 和 unhelpful 共享子词 help 和 ful

➢在训练过程中，对这两个词的更新都会贡献于 help 和 ful 的向量学习

➢这使得模型能够自动学习到前缀 un- 具有“否定”的语义功能

➢对于罕见词（如 braggadocio），即使它本身出现次数很少，但其子词（如 brag）可能很常

见，从而帮助其学习到一个更高质量的向量

FastText 的两大优势

38

➢要点回顾

➢核心创新: 通过引入子词信息 (character n-grams)，打破了词的原子性假设

➢架构: 本质上是 Word2Vec (Skip-Gram/CBOW) 的一个增强版，而非全新架构

➢主要优势:

➢能为任何词（包括 OOV）生成向量

➢能高效学习和利用形态学信息

➢代价: 子词词典巨大，模型体积和内存占用远大于 Word2Vec

➢在词嵌入技术谱系中

➢是对 Word2Vec 的一个直接、向后兼容的功能扩展

➢与 BPE/WordPiece 的对比

➢FastText: 使用基于规则的、穷举式的子词切分

➢BPE/WordPiece: 使用基于数据驱动的、更智能的子词切分，是现代 Transformer 模型（BERT, GPT）

的标配

➢完美解决了词的内部结构问题，是从“原子词”到“上下文词”演进中的关键一步

结论

39

➢嵌入向量（Embeddings）

➢词嵌入（Word2vec）

➢Skip-Gram

➢CBOW

➢子词嵌入（fastText）

➢全局向量的词嵌入（GloVe）

总结

	03 词嵌入 (Word Embeddings)
	Slide 1
	概要
	根本问题：如何让机器理解词义？
	Slide 4
	早期的词嵌入 - 独热编码 (One-Hot Encoding)
	独热编码的困境
	Slide 7
	词嵌入理论基石：分布式假设
	词嵌入核心策略：通过“代理任务”学习
	Slide 10
	Word2vec
	Slide 12
	Word2vec 深入解析 (1): Skip-Gram 工作机制
	优化一：负采样 (Negative Sampling)
	Skip-Gram 宏观工作流程
	阶段一：语料准备与词汇表构建
	阶段二：生成训练样本
	Word2Vec
	阶段三：模型初始化
	阶段四：基于负采样的迭代训练
	优化目标 - 损失函数的定义
	阶段五：提取并使用词向量
	Slide 23
	学习词向量的两大流派
	核心洞察：意义蕴含在共现概率的“比率”中
	从洞察到模型 (1):建立数学框架
	从洞察到模型 (2):推导最终形式
	GloVe的目标函数
	关键的权重函数 𝑓(𝑥)
	GloVe 完整算法流程
	Word2vec vs. GloVe
	结论与历史地位
	Slide 33
	子词模型：fastText
	fastText 的核心思想
	fastText模型架构：对 Skip-Gram 的精巧扩展
	FastText 的两大优势
	结论
	总结

